Scientific groups
X-Ray Texture Laboratory
Laboratory of Ion-Beam and Plasma Modification of Materials
Laboratory of Technological Cycle
Physical Phenomena Modelling
Study of the Radiation Resistance of Structural Materials
Multiscale Modeling of Diffusion and Diffusion Phase Transformations
Mathematical and Computer Modeling in Materials Science
Laboratory of Nuclear Fuel Materials
1. Name of the scientific group (laboratory)
Laboratory of X-Ray Texture Analysis
2. Head of the scientific group
Margarita Gennadievna ISAENKOVA
Professor, Doctor of Physical and Mathematical Sciences
Additional information about the Head:
- Corresponding Member of the Russian Academy of Natural Sciences
- Deputy Head of the Department for Educational and Methodological Work
- Member of the editorial board of the journal “Non-Ferrous Metals”
- Profile at ResearchGate: https://www.researchgate.net/profile/Margarita-Isaenkova
- ORCID: https://orcid.org/0000-0002-1191-5586
Laboratory: B-109b
E-mails: MGIsaenkova@mephi.ru, isamarg@mail.ru
3. Composition of the scientific group
- Margarita Gennadievna ISAENKOVA, Professor, Doctor of Physical and Mathematical Sciences, Head of the scientific group
- Olga Alexandrovna KRYMSKAYA, Associate Professor, Candidate of Physical and Mathematical Sciences
- Vladimir Alexandrovich FESENKO, researcher
- Sergey Danilovich STOLBOV, engineer, postgraduate student
- Maria Maratovna ZARIPOVA, engineer, postgraduate student
- Kristina Evgenievna KLYUKOVA, engineer, post-graduate student
- Roman Aleksandrovich MINUSHKIN, engineer, post-graduate student
- Anatoly Evgenievich RUBANOV, engineer, post-graduate student
- Maria Sergeevna MYASNIKOVA, engineer, master’s student
- Mark Igorevich PETROV, engineer, master’s student
- Wei Yang Phyo Maung, master’s student
- Egor Evgenievich, ZHDANOV, engineer, undergraduate student
- Kamilla Azatovna ZARIPOVA, engineer, undergraduate student
4. Main scientific directions
-
The laboratory conducts X-ray studies of crystallographic texture, phase composition, structural characteristics and residual stresses in various materials (fuel cladding, guide channels, spacer grids, vessel steels, fuel pellets, medical alloys, gas pipelines, etc.), as well as analysis of the influence on them the parameters of thermomechanical processing by modeling the processes of deformation, recrystallization, phase transformations and texture formation.
Main scientific directions of research in the laboratory:
-
Research of reactor materials (zirconium alloys, vessel steels and claddings of fast reactors, fuel materials);
-
Study of titanium alloys with superelasticity and shape memory effect;
-
Study of steels for various purposes (electrical, pipes of main gas pipelines, austenitic steels, ferritic-martensitic DUO steels);
-
Development of texture formation and recrystallization models;
-
Simulation of plastic deformation processes;
-
Simulation of crystallization processes in selective laser alloying of powders (additive technologies).
5. Research equipment and installations
-
X-ray diffractometer D8 Discover (Bruker AXS) with a thermal camera and various devices for changing the survey geometry, as well as X-ray diffractometers of domestic production;
-
Digital indentometer DNT 1/5 for measurements of continuous indentation curves;
-
Calculation codes MTEX (for texture analysis), DAMASK (plastic deformation modeling), as well as our own developments;
-
Computing cluster of NRNU MEPhI.
6. Scientific projects
Active projects:
-
Determination of hydrogen solubility in zirconium alloys E110 opt, E635 and study of the effect of hydride orientation on the strength and ductility of non-irradiated NCs from alloy E635, JSC VNIINM, 2020-2023;
-
Development of an X-ray method for assessing the degree of recrystallization of products from zirconium alloys E110, E635 and their modifications, VNIINM JSC, 2020-2022;
-
Carrying out a complex of macro- and microstructural studies, X-ray diffraction and X-ray phase analysis of samples to justify the choice of hull steel compositions in relation to the operational parameters of VVER-S and VVER-SKD, Research Center KI, 2020-2021;
-
Study of the influence of stress state on the course of phase α-β-α-transformations in zirconium-based alloys, RFBR, 2019-2021;
-
Measurement of the ratios of texture components and the level of residual stresses in samples of steel pipes of X80 strength class, Gazprom VNIIGAZ LLC, 2021.
Completed projects:
-
Development of a plan and scheme for experimental studies of the texture and structure of electrical steel, customer PJSC NLMK, 2020;
-
Reducing the tendency to corrosion cracking of pipes of main gas pipelines by creating layer-by-layer texture heterogeneity in them, Ministry of Education and Science, 2017-2019;
-
Performance of work on the study of properties and optimization of the technology for manufacturing standard forms of cellular structures on equipment for layer-by-layer synthesis by selective laser melting, NPO TsNIITMASH, 2018.
7. Publications
-
Accounting for twinning when modelling plastic deformation of-zirconium /Isaenkova M.G., Perlovich Y.A., Krymskaya O.A., Zhuk D.I. // Tsvetnye Metally, 2020. DOI: 10.17580/tsm.2020.03.13
-
Deformation behavior modelling of lattice structures manufactured by a selective laser melting of 316L steel powder / Isaenkova M.G., Yudin A.V., Rubanov A.E., Osintsev A.V., Degadnikova L.A. // Journal of Materials Research and Technology, 2020. DOI: 10.1016/j.jmrt.2020.10.089
-
Influence of technology of obtaining chromium coating on cladding tubes from Zr – 1% Nb – (O, Fe) alloy on change of its structure during air oxidation at temperatures 400–1150°С / Isaenkova M.G., Perlovich Y.A., Stolbov S.D., Klyukova K.E., Fesenko V.A., Berlin E.V. // Tsvetnye Metally, 2020. DOI: 10.17580/tsm.2020.02.09
-
Anisotropy of the mechanical properties of austenitic steel products obtained by selective laser melting / M. G. Isaenkova, Yu. A. Perlovich, A. E. Rubanov, A.V. Yudin // CIS Iron and Steel Review, 2019. DOI: 10.17580/cisisr.2019.02.13
-
Effect of biaxial cyclic severe deformation on structure and properties of Ti-Ni alloys/ Zaripova M., Isaenkova M. et al. // Journal of Alloys and Compounds, 2019. DOI: 10.1016/j.jallcom.2019.05.127
-
Isaenkova M.G., Perlovich Y.A., Krymskaya O.A., Zhuk D.I., Stolbov S.D., Klyukova K.E. Simulation of the Stamping of Spacing Grid Cells Made of Thin-Walled Zirconium Tubes // Russian Metallurgy, 2019.
-
«Программа построения обобщенных прямых полюсных фигур «GPF», предназначенная для анализа субстурктурной неоднородности материалов (свидетельство о государственной регистрации № 2018663855 от 06.11.2018 г.,), (“Program for constructing generalized direct pole figures “GPF” designed for the analysis of substructural inhomogeneity of materials (state registration certificate No. 2018663855 dated 06.11.2018).
8. Final qualifying works
-
Patterns of changes in the size of cubic samples of the Zr-2.5% Nb alloy as a result of dilatometric tests in the temperature range of 20-1200 °C – Dias Maratuly AMIR, WRC, 2021;
-
Regularities in the development of structure and texture in austenitic steel during cold rolling – Mikhail Romanovich TITOV, WRC, 2021;
-
The influence of substructural inhomogeneity of textured zirconium-based alloys on the anisotropy of their physical and mechanical properties – Olga Aleksandrovna KRYMSKAYA, dissertation, 2020;
-
Development of a model for the elastic-plastic behavior of textured products made of zirconium-based alloys – Dmitry Igorevich ZHUK, dissertation, 2020;
-
Formation of the structure and crystallographic texture in products from promising reactor steels with bcc structure during plastic deformation and heat treatment – Petr Leonidovich DOBROKHOTOV, dissertation, 2020;
-
Reducing stress-corrosion cracking of pipes of main gas pipelines by creating layer-by-layer textural heterogeneity in them – Nikolay Sergeevich MOROZOV, postgraduate student of the NKR, 2020;
-
Development of the structure, crystallographic texture and mechanical properties of sheets from promising titanium alloys during plastic deformation and heat treatment – Yan Aleksandrovich BABICH, postgraduate student of the NKR, 2020.
9. Exemplary topics of student research works and final qualifying works
-
Construction of a section of the Zr-H phase diagram for alloys E110opt, E110M, E635 in the temperature range from 0 to 400 °C;
-
Study of the mechanisms of destruction of specimens of non-irradiated guide channels of fuel assemblies made of E635 alloy in the presence of an oriented hydride phase;
-
Investigation of the nature of the destruction of the alloy depending on the proportion of radially oriented hydrides;
-
Investigation of the mechanisms of phase transformations in alloys with shape memory effect and superelasticity;
-
Calculation of properties of two-phase materials;
-
Development of a model for the recrystallization of electrical steels;
-
Development of methods for studying materials using synchrotron radiation and neutron beams.
10. Project practice
-
The scientific group is ready to conduct project practice for 1st year students.
11. Other information
-
Additional contact information, website of the scientific group, etc. Any other additional information (if necessary).
1. Name of the scientific group (laboratory)
Laboratory of Ion-Beam and Plasma Modification of Materials
2. Head of the scientific group
Pavel Sergeevich DZHUMAEV
Associate Professor, Candidate of Technical Sciences
Additional information about the Head:
- Deputy Head of the Department 9 for Science
- ORCID https://orcid.org/0000-0001-7202-5280
- Profile at ResearchGate: https://www.researchgate.net/profile/Pavel-Dzhumaev
Auditoriums: B-039, B-115/117, D-220, D-501, D-502
E-mail: PSDzhumaev@mephi.ru
3. Composition of the scientific group
Pavel Sergeevich DZHUMAEV, Associate Professor, Candidate of Technical Sciences, Head of the scientific group
Valery Igorevich POLSKY, Candidate of Technical Sciences, Associate Professor
Olga Vladimirovna EMELYANOVA, PhD, assistant
Alexander Sergeevich YASHIN, Manager of the Laboratory
Dmitry Andreevich SAFONOV, postgraduate student, engineer
Egor Leonidovich KORENEVSKY, postgraduate student, engineer
Rafael ISAEV, postgraduate student, engineer
Vladimir Alexandrovich CHURSIN, engineer
Elizaveta Sergeevna ANTONOVA, undergraduate student
Evgeniy Dmitrievich MALINOVSKY, undergraduate student
Natalya Alekseevna PUKHAREVA, undergraduate student
Ekaterina Romanovna SLEPTSOVA, undergraduate student
Rashad OSMANOV, master’s student
4. Main scientific directions
Development of methods and techniques for modifying the inner outer and inner surface of fuel rod pipes for fuel assemblies of thermal and fast neutron reactors;
Creation and study of a chromium-containing coating on fuel-element claddings made of alloy E110o.ch., which provides an increase in resistance under high-temperature oxidation at temperatures up to 1500 °C;
Search for radiation- and corrosion-resistant states in the family of high-entropy alloys in relation to use in the active zones of nuclear reactors;
Electron microscopic studies of the structural-phase state of structural materials, including zirconium-based alloys, amorphous and nanostructured materials, high-entropy alloys, corrosion-resistant steels of the Fe-Cr-Ni, Fe-Cr systems and other alloys.
5. Research equipment and installations
5.1 Installations for modifying the structural-phase state of materials and cylindrical products
5.1.1 Installation for ion-beam finishing of materials and products ILUR-03, equipped with two ion sources and three magnetrons, is used for ion-beam processing (etching and application of multilayer coatings) of fuel pipes rotating and moving along the chamber to pass through the chamber;
5.1.2 Installation for ion-beam finishing of materials and products KVK-10, equipped with a heavy ion implanter, two ion sources and three magnetrons, a cassette for placing tubular samples 500 mm long in the amount of 24 pieces (each tube rotates around its axis and moves with cassette around the axis of the cassette);
5.1.3 Installation Desna-M, for generating high-temperature gas plasma pulses according to the Z-pinch principle.
5.2 Analytical equipment
5.2.1. Scanning electron microscope ZEISS EVO 50 XVP.
5.2.2. Transmission electron microscope ZEISS Libra-120.
5.3 Autoclave Buchi limbo 350 ls for corrosion testing of specimens in an aqueous medium at temperatures up to 350 °C and pressures up to 300 atm.
5.4 Sample preparation laboratory for scanning and transmission electron microscopy, including a precision cutting machine, a hot press for pressing samples into a compound, a grinding and polishing machine, a TenuPol-5 device for jet electrolytic thinning of foils for transmission electron microscopy.
6. Scientific projects for the last 5 years
Active projects:
-
“Development and justification of the safety of the use of nuclear fuel for nuclear reactors of various types: “Creation and study of a chromium-containing coating on fuel rod claddings made of alloy E110o.ch., which provides an increase in resistance under conditions of high-temperature oxidation at temperatures up to 1500 ° C”, 2020-2022. , source of financing JSC VNIINM, Head of the project – Kalin B.A.;
-
“Development of the technology for modifying the inner surface on fragments of fuel rods and studying the microstructure of prototypes”, 2021, source of funding from JSC VNIINM, Head of the project – Dzhumaev P.S.
Completed projects:
-
Creation of anti-corrosion barrier layers on fuel-element claddings made of E110 alloy on a spongy basis by ion-plasma surface modification, 2017-2018, funding source of JSC VNIINM, Head of the project – Kalin B.A.;
-
“Study of the local chemical composition of samples from titanium alloys”, 2018, ChMP JSC funding source, Head of the project – Dzhumaev P.S.;
-
“Study of the effectiveness of wear-resistant anti-corrosion barrier layers on fuel claddings made of alloy E110 in relation to the development of ATF fuel”, 2018, source of funding from JSC VNIINM, Head of the project – Kalin B.A.
7. Publications
1. Учебник «Физическое материаловедение» в 8 томах // Научный редактор Калин Б.А. // НИЯУ МИФИ, 2021 (Textbook “Physical Materials Science” in 8 volumes // Scientific editor Kalin B.A. // National Research Nuclear University MEPhI, 2021).
2. Чернов И.И., Углов В.В., Калин Б.А., Стальцов М.С., Тенишев А.В., Черенда Н.Н. Конструкционные и функциональные материалы ядерных энергетических установок // Минск: Вышэйшая школа, 2021, 239 стр. (Chernov I.I., Uglov V.V., Kalin B.A., Staltsov M.S., Tenishev A.V., Cherenda N.N. Structural and functional materials for nuclear power plants // Minsk: Higher School, 2021, 239 pages.)
3. Emelyanova O., Gentils A., Borodin V.A., Ganchenkova M.G., Vladimirov, P.V., Dzhumaev, P.S., Golovchanskiy I.A., Lindau, R., Möslang, A. Bubble-to-void transition promoted by oxide nanoparticles in ODS-EUROFER steel ion implanted to high He content // Elsevier, Journal of Nuclear Materials, 2021, V.545, статья № 152724.
4. Kalin B.A., Yashin, A.S., Dzhumaev, P.S., Safonov D.A., Korenevsky E.L., Fedorov D.A., Novikov V.V., Kuznetsov V.I., Fedotov P.V., Krivobokov V.P., Yanin, S.N., Mokrushin, A.A., Polunin, K.K., Uglov, V.V. Features of creating wear-resistant anti-corrosion coatings with a barrier layer on fragments of fuel claddings from E110 o.ch. // IOP Conference Series: Materials Science and Engineering, 1005 (1), статья № 012009.
5. Коррозия оболочек твэлов в жизненном цикле ТВС легководных реакторов // Крицкий В.Г., Калин Б.А. // НИЯУ МИФИ, 2020, 200 стр. (Corrosion of fuel claddings in the life cycle of fuel assemblies in light water reactors // Kritsky V.G., Kalin B.A. // National Research Nuclear University MEPhI, 2020, 200 pages.)
6. Анализ направлений создания толерантного топлива // Калин Б.А., Тенишев А.В., Полянский А.А. // АО «ГНЦ НИИАР» Димитровград, 2019 (Analysis of directions for the creation of tolerant fuel // Kalin B.A., Tenishev A.V., Polyansky A.A. // JSC “SSC RIAR” Dimitrovgrad, 2019.).
7. Aydogan, E., Chen T., Gigax J.G., Chen D., Wang, X., Dzhumaev P.S., Emelyanova, O.V., Ganchenkova M.G., Kalin B.A., Leontiva-Smirnova M., Valiev R.Z., Enikeev N.A., Abramova, M.M., Wu Y., Lo W.Y., Yang Y., Short M., Maloy S.A., Garner F.A., Shao L. Effect of self-ion irradiation on the microstructural changes of alloy EK-181 in annealed and severely deformed conditions // Elsevier, Journal of Nuclear Materials, 2017, V.487, pp. 96-104.
8. Kalin B.A, Volkov N.V., Valikov R.A., Yashin A.S. Effect of Ion Polishing on Corrosion Resistance of the Cladding of Fuel Elements from E110 Alloy in the Steam Water Environment // Inorganic Materials: Applied Research, 2017, Vol. 8, №. 3, P. 364–369.
8. Final qualifying works
Topics of the final qualifying works, including scientific qualifying works and dissertations, defended in the scientific group over the past 5 years;
Selection of effective modes of ion modification of the outer surface of shells in order to increase corrosion resistance, Korenevsky E.L., Master, Specialty 22.04.01, 2019;
Investigation of the barrier layer between the chromium-containing coating and the E110 alloy, Novikov R.D., Engineer-Physicist, Specialty 140503, 2020;
Justification of the applicability of Ta as a barrier layer in the Zr–Ta–Cr system, Isaev R.Sh., Master, Specialty 22.04.01, 2020;
Study of the effect of surface modification and surface alloying with yttrium, niobium and tantalum using high-temperature pulsed plasma flows on the corrosion resistance of alloy E110, Fedorov D.A., Master, Specialty 22.04.01, 2020;
Development of a method for aluminizing steels from pre-applied aluminum coatings, Simdyanova S.D., Engineer-Physicist, Specialty 140503, 2021;
Study of the process of coating and ion mixing of the atoms of the film and zirconium substrate during bombardment with heavy ions at the KVK-10 facility, Chursin V.A., Engineer-Physicist, Specialty 140503, 2021.
9. Exemplary topics of student research works and final qualifying works
Approximate (possible) topics of student research works (2-5 topics).
1. Development of methods for surface liquid-phase alloying of zirconium alloys to increase their corrosion resistance;
2. Search for corrosion-resistant high-entropy alloys based on refractory metals as protective coatings for fuel-element cladding of tolerant fuel;
3. Development of modes for deposition of dense metal coatings by magnetron sputtering with high-power pulses (HIPiMS);
4. Study of the influence of the bias potential on the substrate on the structural-phase state of chromium-containing coatings on zirconium alloys.
10. Project practice
Annual introductory practice-excursion for the second-year undergraduate students as part of individual work with students in solving problems on the subject of the laboratory.
Examples of tasks to solve independently and write in the form of an abstract:
Task 9 Magnetron coating
9.1 Magnetron sputtering systems;
9.2 Dependence of the composition of coatings on the structure of the magnetron cathode.
Task 10 Methods for spraying the surface of products
10.1 Zirconium sputtering at normal ion incidence;
10.2 Sputtering of zirconium depending on the angle of incidence of ions.
1. Name of the scientific group (laboratory)
Technological Cycle Laboratory
2. Head of the scientific group
Oleg Nikolaevich SEVRYUKOV
Associate Professor, Candidate of Technical Sciences
Additional information about the Head:
- Member of the Editorial Board of the journal “Welding Production”,
- Member of the Union of Russian Writers,
- Member of the International Academy of Russian Literature.
Laboratory: B-104
E-mail: Sevr54@mail.ru
3. Composition of the scientific group
Sevryukov O.N., Associate Professor, Candidate of Technical Sciences, Head of the scientific group
Suchkov A.N., Associate Professor, Candidate of Technical Sciences
Ivannikov A.A., Candidate of Technical Sciences, Senior Lecturer
Fedotov I.V., Senior Lecturer, Candidate of Technical Sciences
Morokhov P.V., lead engineer
Penyaz M. A., postgraduate student
Bachurina D.M., postgraduate student
Gurova Yu.A., senior laboratory assistant
Maksimkina E.A., technician
Gabov A.I., undergraduate
Popov N.S., undergraduate
Vorkel V.A., bachelor
Abramov A.V., bachelor
Klyucharev V.Yu., bachelor
4. Main scientific directions
Scientific research in the field of amorphous and nanocrystalline rapidly hardened alloys;
High-temperature soldering of materials, analysis of the structural-phase state of soldered joints;
Development of new structural and functional materials using a progressive method of ultrafast melt quenching;
Research in the field of additive and nanotechnologies.
5. Research equipment and installations
Installation for ultrafast solidification of the melt “Crystal 702”;
Arc vacuum furnace MIFI-9;
Installations with resistive heating for vacuum high-temperature processing of materials “Xserion”, “Xretort”, SShVL;
Installation for induction vacuum melting of metals UIPV 63-10-0.01;
Microhardness testers, scanning atomic force microscopes, optical microscopes.
6. Scientific projects
Influence of the elemental composition of amorphous-crystalline nickel filler alloys on the evolution of the structural-phase state of brazed joints from high-alloy steels, 2019-2021, RFBR;
Effect of microstructure on the mechanisms of corrosion fatigue of AISI 304 joints depending on the chemical composition of solder alloys of the NiCrSiB system, 2019-2020, RFBR + German NTO;
Development of a technology for combining tungsten with promising alo-activated materials of the DEMO thermonuclear reactor, 2019-2021, Grants Council of the President of the Russian Federation;
Development of technological solutions for soldering piezoelectric elements, 2020-2022, Spectral-Tech JSC;
Implementation of the mid-range R&D “Conducting research on the production of amorphous-nanocrystalline solders for active soldering of dissimilar materials” State Defense Order, 2021-2023, FSUE VNIIA;
Development of a multilayer composite of amorphous tapes for the aviation industry, 2020-2022, Innovation Promotion Foundation;
Development of technology for obtaining spherical powders for 3D technologies, 2020-2022, Innovation Promotion Foundation.
7. Publications
1. Fedotov, I., Suchkov, A., Sliva, A., Dzhumaev, P., Kozlov, I., Svetogorov, R., Bachurina, D., Sevryukov, O. Study of the microstructure and thermomechanical properties of Mo/graphite joint brazed with Ti–Zr–Nb–Be powder filler metal (2021) Journal of Materials Science, 56 (19), pp. 11557-11568.
2. Bachurina, D., Vorkel, V., Suchkov, A., Gurova, J., Ivannikov, A., Penyaz, M., Fedotov, I., Sevryukov, O., Kalin, B. Overview of the mechanical properties of tungsten/steel brazed joints for the demo fusion reactor (2021) Metals, 11 (2), статья № 209, pp. 1-11.
3. Ivannikov, A.A., Kalin, B.A., Sevryukov, O.N., Penyaz, M.A., Fedotov, I.V., Misnikov, V.E., Tarasova, M.S. Study of the Ni–Si–Be system as a base to create boron-free brazing filler metals
(2018) Science and Technology of Welding and Joining, 23 (3), pp. 187-197.
4. Kalin, B.A., Suchkov, A.N., Fedotov, V.T., Sevryukov, O.N., Ivannikov, A.A., Gervash, A.A. Brazing of Be with CuCrZr-bronze using copper-based filler metal STEMET (2016) Nuclear Materials and Energy, 9, pp. 388-393.
5. Penyaz, M.A., Popov, N.S., Ivannikov, A.A., Sevryukov, O.N. Alloying-dependent microstructure influence on corrosion resistance of AISI 321 cell joints brazed by Ni-based filler metals (2020) Non-ferrous Metals, 48 (1), pp. 41-48.
6. Bachurina, D., Suchkov, A., Gurova, J., Savelyev, M., Dzhumaev, P., Kozlov, I., Svetogorov, R., Leont’eva-Smirnova, M., Sevryukov, O. Joining tungsten with steel for DEMO: Simultaneous brazing by Cu-Ti amorphous foils and heat treatment (2021) Fusion Engineering and Design, 162, статья № 112099.
7. Shelyakov, A., Sitnikov, N., Khabibullina, I., Borodako, K., Sevryukov, O. Shape memory behavior of rapidly quenched high-copper tinicu alloys (2021) U.Porto Journal of Engineering, 7 (2), pp. 2-10.
8. Final qualifying works
1. Study of solder joints W/Rusfer and W/Eurofer obtained using solders of the Ti–Zr–Be system, Gurova Yu.A., VKR specialist, 2021;
2. Research of promising complexly alloyed metal powder alloys for additive technologies, Maksimkina E.A. 2021, WRC specialist, 2021;
3. Study of the interaction of titanium-based solder with silicon carbide ceramics to create permanent joints, Eroshenko A.A., VKR specialist, 2021;
4. High-nickel amorphous and nanostructured alloys for the creation of heat-resistant one-piece joints of structural elements from austenitic steels, Ivannikov A.A., Ph.D. thesis, 2020;
5. Preparation of a high-entropy alloy in the Ni-Nb-Co-Fe-Cr system by the method of rapid solidification of the melt and the study of its properties as a solder for soldering oxide ceramics Gabov A.I., Bachelor’s thesis, 2019;
6. Development of brazing modes for EK-181 steel with tungsten in relation to the DEMO thermonuclear reactor, Bachurina D.M., WRC specialist, 2018;
Study of the heat resistance of permanent joints obtained by high-temperature brazing of corrosion-resistant steels with quick-hardened nickel solders, Penyaz M.A., Master’s thesis, 2017.
9. Exemplary topics of student research works and final qualifying works
Development of technological solutions for soldering piezoceramic actuators;
Carrying out research on the production of amorphous-nanocrystalline solders for active soldering of dissimilar materials;
Development of technological solutions for soldering high-frequency vacuum bushings.
10. Project practice
Readiness of the scientific group to conduct project practice for 1st year students: yes.
11. Other information
The scientific team of the laboratory takes an active part in international conferences, cooperates with Russian and foreign scientific centers, such as IMET RAS (Moscow, Russia), JSC NIIEFA (St. Russia), FTI im. A.F. Ioffe (St. Petersburg, Russia), Jülich Research Center (Germany), Technical University of Dortmund (Germany), Chemnitz Technical University (Germany). The laboratory involves students in real research activities, including students of initial courses.
1. Name of the scientific group (laboratory)
Physical Phenomena Modelling
2. Head of the scientific group
Vladimir Alekseevich BORODIN
Professor, Doctor of Physical and Mathematical Sciences
Laboratory: B-110
E-mail: vaborodin@mephi.ru
3. Composition of the scientific group
Vladimir Alekseevich BORODIN, Professor, Doctor of Physical and Mathematical Sciences, Head of the scientific group
Nikolai Dmitrievich KOMAROV, master’s student
Bato Ochirovich NAMZHILOV, master’s student
Gleb Sergeevich SAVIN, undergraduate student
Ilya Igorevich SUKHAREV, undergraduate student
4. Main scientific directions
Theoretical radiation materials science.
5. Research equipment and installations
Modern calculation codes for modeling physical processes in structural and functional materials of atomic and thermonuclear reactors.
6. Scientific projects
7. Publications
1. V.A. Borodin, P.V. Vladimirov, Combined BC/MD approach to the evaluation of damage from fast neutrons and its implementation for beryllium irradiation in a fusion reactor, Model. Simul. Mater. Sci. Eng. 25, 084005, 2017. (https://doi.org/10.1088/1361-651X/aa8f6b)
2. V.A. Borodin, P.V. Vladimirov, Vacancies and interstitials in yttrium, J. Phys.: Condensed Matter 31, 185401, 2019 (https://doi.org/10.1088/1361-648X/ab0255)
3. O. Emelyanova, A. Gentils, V.A. Borodin, etc., Bubble-to-void transition promoted by oxide nanoparticles in ODS-EUROFER steel ion implanted to high He content, J. Nucl. Mater. 545, 152724, 2021.
8. Final qualifying works
9. Exemplary topics of student research works and final qualifying works
– Simulation of radiation damage accumulation in metal alloys and ceramics;
– Radiation effects in nuclear fuel;
– Diffusion in metallic glasses;
– Hydrogen in metals.
1. Name of the scientific group (laboratory)
Investigation of Structural Materials Radiation Resistance
2. Head of the scientific group
Ivan Ilyich CHERNOV
Professor, Doctor of Physical and Mathematical Sciences
Additional information about the Head:
- Laureate of the Prize of the Russian Federation in the field of science and technology,
- Laureate of the Prize of the USSR Ministry of Higher Education,
- Laureate of the Industry Award (now Rosatom),
- Honorary Worker of Higher Professional Education of the Russian Federation,
- Master of Sports of the USSR in sambo wrestling.
Laboratory: D-214
E-mail: i_chernov@mail.ru
3. Composition of the scientific group
- Chernov I.I., Professor, Doctor of Physical and Mathematical Sciences, Head of the scientific group
- Staltsov M.S., Associate Professor, Candidate of Physical and Mathematical Sciences
4. Main scientific directions
- Radiation physics and technology.
- Structural materials of nuclear reactors.
- The problem of helium and hydrogen in the structural materials of nuclear reactors.
- Simulation studies of radiation damage in reactor structural materials.
5. Research equipment and installations
- Transmission electron microscope ZEISS Libra-120;
- Leak detector.
6. Scientific projects
Systematic studies of the influence of the type of crystal structure and alloying on the swelling resistance of new and used structural reactor materials, as well as vanadium alloys, have been carried out. For example:
- State task No. 3.483.2014/K “Production of dispersion-hardened ferritic-martensitic steels using spark-plasma sintering technology and study of their radiation damage in comparison with reactor austenitic steel” (2014-2016).
- Scholarship of the President of the Russian Federation for young scientists and graduate students carrying out advanced research and development in priority areas of modernization of the Russian economy (Competition 2016-2018) on the topic “Regularities of the development of gas and vacancy porosity in promising vanadium alloys under simulated irradiation with ions of various masses and energies.”
- Contract No. 514 for the performance of research work between the Republican State Enterprise on the right of economic management “Institute of Nuclear Physics” of the Ministry of Energy of the Republic of Kazakhstan and the Federal State Autonomous Educational Institution of Higher Education “National Research Nuclear University “MEPhI” “Studying the effect of synergistic effects of helium and neutron irradiation on the structure and mechanical properties of austenitic steel” (2020).
7. Publications
- Optimization of electric-pulse consolidation regimes to obtain high-density dispersion-hardened reactor Steel / 1. Bogachev I.A., Chernov I.I., Stal’tsov M.S., Kalin B.A., Olevskii E.A., Lebedeva L.Y., Nikitina A.A. – Atomic Energy, 2016, v. 120, No. 1, p. 37–43.
DOI: 10.1007/s10512-016-0092-0 - Optimization of mechanical alloying and spark-plasma sintering regimes to obtain ferrite-martensitic ODS steel / Bogachev I.A., Chernov I.I., StaltsovМ.S., Kalin B.A., Olevsky E.A., LebedevaL.Yu., Nikitina A.A. – Nuclear Materials and Energy, 2016, v.9, p. 360–366.
DOI: 10.1016/j.nme.2016.08.020 - Yttrium oxide concentration effect on helium porosity formation in oxide-dispersion hardened ferrite-martensite steel / Nikolaeva I.D., Staltsov M.S., Chernov I.I., Kalin B.A., Bogachev I.A., GusevaL.Yu., Drozhzhina M.V., Tishchenko A.G., Belyaev A.A., Korshunov S.N. – Atomic energy, 2018, V. 124, No.3, p.173–179.
DOI: https://doi.org/10.1007/s10512-018-0393-6 - Peculiarities of helium porosity evolution in the ferritic–martensitic steels produced by spark plasma sintering / Chernov I.I., Staltsov M.S., Kalin B.A., Bogachev I.A., Korshunov S.N. – Nuclear Materials and Energy, 2018, v. 16, p. 249–257.
DOI: https://doi.org/10.1016/j.nme.2018.07.010 - Features of gas porosity formation along helium ion trajectories in vanadium alloy / Staltsov M.S., Chernov I.I., Korshunov S.N., LagovP.B.. – Atomic energy, 2019, v. 126, No. 1, p. 46–51.
DOI: https://doi.org/10.1007/s10512-019-00512-6 - On the theory of bubble coarsening in metals / Ovcharenko A.M., Chernov I.I. – J. Nuclear Materials, 2020, v. 528, p. 1–11.
DOI:https://doi.org/10.1016/j.jnucmat.2019.151824 - Surface evolution of the 18Cr10NiTi steel under irradiation by 98 Mev 56Fe10+ ions / M.S. Staltsov, I.I. Chernov, A.S. Dikov, I.A. Ivanov // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. – 2021. – V.491. – P. 59–65.
DOI: https://doi.org/10.1016/j.nimb.2021.01.008
8. Final qualifying works
- Change in the chemical composition and surface structure of Cr18Ni10Ti steel under high-dose irradiation with Ni11+ ions with an energy of 101 MeV / Filatkina A.F., specialist’s degree, 2021.
- Evolution of the microstructure of Cr18Ni10Ti steel under high-dose irradiation by nickel ions with an energy of 101 MeV / Musatkin E.S., specialist’s degree, 2021.
- Change in the chemical composition and microstructure of austenitic steel Kh18N10T under high-dose irradiation by Fe10+ ions with an energy of 98 MeV at 650 °C / Busygina I.A., specialist’s degree, 2020.
- Influence of titanium on the formation of helium porosity in V‒Ti and V‒Cr‒Ti alloys / Dean Kuok Dat, master’s degree, 2020.
- Features of the formation of gas porosity along the path of ions in vanadium alloys irradiated with helium and hydrogen ions / Belyaev A.A., master’s degree, 2018.
- Thesis for the degree of Candidate of Physical and Mathematical Sciences “Vacancy and gas swelling and the behavior of hydrogen in reactor ferritic-martensitic steels manufactured using various technologies” / Bogachev I.A., postgraduate study, 2017.
- Thesis for the degree of Candidate of Technical Sciences “Thermal and radiation creep of austenitic and ferritic-martensitic steels in relation to long-term storage of spent nuclear fuel” / Dikov A.S., postgraduate study, 2021.
9. Exemplary topics of student research works and final qualifying works
- Simulation studies of the radiation resistance of reactor structural materials.
- Helium in structural materials of nuclear reactors.
- Hydrogen in structural materials of nuclear reactors.
- Influence of alloying elements on the behavior of helium and hydrogen in reactor structural materials.
10. Project practice
- The readiness of the scientific group to conduct project practice for the 1st year students (yes / no).
Yes.
11. Other information
Four works of the scientific group at the Field Sessions of the Scientific Council of the Russian Academy of Sciences on the problem of “Radiation Solid State Physics” were recognized as the most important results in the field of radiation solid state physics for 2012, 2013, 2015 and 2016, respectively:
- The behavior of helium in dispersion-hardened ferritic-martensitic steels / Chernov I.I., Staltsov M.S., Bogachev I.A., Ji Zin Wu, Kalin B.A.
- Formation of gas porosity in vanadium alloys V-W, V-Ta, V-Zr and V-Ti implanted with helium ions at 650 °C / Chernov I.I., Staltsov M.S., Aung Jo Zo, Kalin B.A.
- Features in the development of radiation swelling of vanadium under successive irradiation with helium and nickel ions / Chernov I.I., Staltsov M.S., Kalin B.A.
- Features in the development of vacancy porosity in reactor steels irradiated with nickel ions with an energy of 7.5 MeV to an ultrahigh dose in the Tandetron accelerator of the SSC RF-IPPE / Chernov I.I., Staltsov M.S., Kalin B.A., Glotov A. I., Kobets U.A., Pechenkin V.A., Romanov V.A.
Professor I.I. Chernov and Associate Professor M.S. Staltsov are always ready to give any information and provide assistance in the implementation of course projects and final qualifying works to students performing research and final qualifying works in the scientific group.
1. Название научной группы (лаборатории)
Многомасштабное моделирование диффузии и диффузионных фазовых превращений
Multiscale modeling of diffusion and diffusion phase transformations
2. Руководитель научной группы:
Назаров Андрей Васильевич
Доцент, Отделение ядерной физики и технологий офиса образовательных программ (411) ИЯФиТ
к.ф-м.н.
с.н.с.
Дополнительная информация о руководителе:
– Член Materials Research Society
– Профиль в ResearchGate: https://www.researchgate.net/profile/Andrei-Nazarov-2
– ORCID: https://orcid.org/0000-0003-0085-3639
– ResearcherID: A-9558-2011
AVN46@mail.ru
3. Состав научной группы
Назаров Андрей Васильевич, к.ф-м.н., руководитель группы
Гусев Алексей Андреевич, инженер, аспирант
Макарова Владлена Александровна, студентка
Сергеев Григорий Владимирович, студент
Кахидзе Роман Зурабиевич, студент
4. Основные научные направления
В группе на основе оригинальных теоретических подходов проводится многомасштабное моделирование дефектов и их комплексов, диффузионных процессов, диффузионных фазовых (структурных) превращений в металлах и сплавах.
Основные научные направления исследований группы:
– Изучение взаимной диффузии в бинарных и многокомпонентных (высоко энтропийных) сплавах
– Моделирование кинетики роста пор в металлах
– Изучение механизмов диффузии в интерметаллидах методами компьютерного моделирования
– Моделирование кинетики образования сегрегаций (атмосфер Котрелла) в упругих полях дислокаций
– Моделирование влияния давления на диффузию точеных дефектов и их комплексов
– Изучение влияния упругих полей на потоки вакансий и атомов
5. Исследовательское оборудование и установки
Современные расчетные коды, использующиеся для моделирования физических процессов, разрабатываются в научной группе самими участниками на основе оригинальных алгоритмов и моделей.
Активно используется многоядерный компьютерный кластер НИЯУ МИФИ
6. Научные проекты:
7. Публикации:
1. Simulation of the atomic structure near voids and estimation of their growth rate anisotropy, A.V.Nazarov, A.A.Mikheev, A.P.Melnikov (2020) Journal of Nuclear Materials, V 532, 152067
DOI: 10.1016/j.jnucmat.2020.152067
2. Kinetics of segregation formation in elastic field of edge dislocation in bcc iron
A.A. Gusev and A.V. Nazarov (2020) IOP Conf. Ser.: Mater. Sci. Eng. 1005 012028-8
DOI: 10.1088/1757-899X/1005/1/012028
3. Molecular static simulation of edge dislocation core in bcc iron A.A. Gusev and A.V. Nazarov (2020) IOP Conf. Ser.: Mater. Sci. Eng. 1005 012027-5
DOI 10.1088/1757-899X/1005/1/012027
4. Modeling the atomic structure in the vicinity of the spherical voids and calculation of void growth rate anisotropy in bcc iron and tungsten,
A.V. Nazarov et al 2020 IOP Conf. Ser.: Mater. Sci. Eng. 1005 012026-6
DOI: 10.1088/1757-899X/1005/1/012026
5. Метод дырочного газа К.П.Гурова и альтернативная теория взаимной диффузии, А.В. Назаров (2018) Физика и химия обработки материалов, №2, с48-62. DOI: 10.30791/0015-3214-2018-2-48-62
6. Simulation of correlation effects in ordering binary alloys, M.V. Savvin, A.V. Nazarov (2018) KnE Materials Science, pages. 378–388.
DOI: 10.18502/kms.v4i1.2188
7. Kinetics of segregation formation in the vicinity of edge dislocation in fcc metals, A.A. Mikheev, A.V. Nazarov, I.V. Ershova, A.G. Zaluzhnyi (2016) IOP Conf. Ser.: Mater. Sci. Eng. V130, Number 1 012062
DOI: 10.1088/1757-899X/130/1/012062
8. Выпускные квалификационные работы:
Моделирование корреляционных эффектов при диффузии примесей замещения в металлах с ОЦК структурой – Рябченко Андрей Андреевич, магистратура, 2020 г.
Моделирование влияния упорядочения атомов в сплавах на коэффициенты самодиффузии компонентов и взаимной диффузии- Бутов Никита Александрович, магистратура, 2020 г.
Разработка молекулярно-динамической модели, учитывающей упругую среду, окружающую основную расчётную ячейку, для расчетов характеристик дефектов – Бобокамбарова Мадина Абдужалоловна, магистратура, 2020 г.
Моделирование атомной структуры в окрестности нанопор и оценка анизотропии скорости роста пор в ОЦК и ГЦК металлах – Мельников Алексей Петрович, магистратура, 2019 г.
Моделирование диффузионных процессов в упорядоченных B2 структурах – Белобрага Данил Александрович, магистратура, 2019 г.
Моделирование структуры ядра краевой дислокации и кинетики образования атмосферы Коттрела в альфа железе – Гусев Алексей Андреевич, магистратура, 2018 г.
Моделирование корреляционных эффектов при диффузии атомов в бинарных упорядочивающихся сплавах с ОЦК решеткой кинетическим методом Монте-Карло –
Саввин Максим Владимирович, магистратура, 2017 г.
9. Примерные темы НИРС и ВКР
Примерные(возможные) темы НИРС (2-5 тем).
10. Проектная практика
нет
1. Название научной группы (лаборатории)
Математическое и компьютерное моделирование в материаловедении
Mathematical Modelling and Scientific Computing in Materials Science
2. Руководитель научной группы:
– Воскобойников Роман Евгеньевич
– профессор
– к.ф.-м.н.
– без звания
– Дополнительная информация о руководителе (при необходимости)
– Аудитория
– roman.voskoboynikov@gmail.com
3. Состав научной группы
– ФИО, степень, должность
(обязательно перечислить всех сотрудников из числа НПР, по желанию – инженерный состав, аспирантов и студентов)
4. Основные научные направления
Математическое и компьютерное моделирование в материаловедении
5. Исследовательское оборудование и установки
Программное обеспечение собственной разработки для моделирования радиационных повреждений в материалах методом молекулярной динамики
6. Научные проекты:
РФФИ № 14-08-00859 Исследование радиационных эффектов в никеле для ответственных приложений в энергетике и оптимизации ионно-лучевой обработки жаропрочных никелевых сплавов, РФФИ, 2014-2016
РФФИ № 17-03-01222 Дефекты в интерметаллидах: от фундаментальных свойств до промышленных приложений, РФФИ, 2017-2019
НИЦ КИ №1034 Радиационные эффекты в интерметаллидах: теория, моделирование, экспериментальное подтверждение и индустриальные приложения, НИЦ «Курчатовский институт», 2017
НИЦ КИ №1600 Радиационные дефекты и эффекты в перспективных конструкционных и функциональных материалах для ответственных инженерных приложений в ядерной энергетике, НИЦ «Курчатовский институт», 2018
НИЦ КИ №1603 Индустриально-ориентированные фундаментальные исследования радиационных эффектов в функциональных, конструкционных и биологических материалах, НИЦ «Курчатовский институт», 2019-2020
7. Публикации:
A contribution of L10 ordered crystal structure to the high radiation tolerance of γ-TiAl intermetallics, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2019, https://doi.org/10.1016/j.nimb.2019.04.080
An insight into radiation resistance of D019 Ti3Al intermetallics, Roman Voskoboinikov, Journal of Nuclear Materials, 2019, https://doi.org/10.1016/j.jnucmat.2019.03.046
An MD study of primary damage formation in aluminium, Roman Voskoboinikov, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2019, https://doi.org/10.1016/j.nimb.2019.03.046
MD simulations of primary damage formation in L12 Ni3Al intermetallics, Roman Voskoboinikov, Journal of Nuclear Materials, 2019, https://doi.org/10.1016/j.jnucmat.2019.05.009
Optimal sampling of MD simulations of primary damage formation in collision cascades, Roman Voskoboinikov, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2020, https://doi.org/10.1016/j.nimb.2020.06.001
MD study of surface collision cascades in nickel, Roman Voskoboinikov, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2020, https://doi.org/10.1016/j.nimb.2020.06.032
Statistics of primary radiation defects in pure nickel, Roman Voskoboinikov, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2020, https://doi.org/10.1016/j.nimb.2020.06.034
8. Выпускные квалификационные работы:
Темы ВКР (в т.ч. НКР, диссертаций), защищенных в научной группе за последние 5 лет
(не более 7, в формате: Название, ФИО автора, уровень образования, год защиты)
9. Примерные темы НИРС и ВКР
Квантовомеханическая природа радиационной стойкости многокомпонентных твердых растворов.
Ускоренная компьютерная разработка объемных металлических стекол с заданной комбинацией эксплуатационных свойств.
10. Проектная практика
нет
1. Название научной группы (лаборатории)
Лаборатория «Ядерные топливные материалы»
Laboratory «Nuclear Fuel Materials»
2. Руководитель научной группы:
Тенишев Андрей Вадимович
Доцент
Кандидат технических наук
Доцент
Дополнительная информация о руководителе:
ORCID https://orcid.org/0000-0002-2424-1656
WoS ResearcherID http://www.researcherid.com/rid/G-3695-2013
Аудитория Д-212
avtenishev@mephi.ru
3. Состав научной группы
Тенишев Андрей Вадимович, к.т.н., руководитель лаборатории
Шорников Дмитрий Павлович, к.т.н., доцент
Михальчик Владимир Валерьевич, к.т.н., старший преподаватель
Продувалов Борис Владимирович, ведущий инженер
Никитин Степан Николаевич, ведущий инженер
Смирнов Роман Валентинович, инженер
Савельев Максим Дмитриевич, аспирант
Поречный Сергей Витальевич, инженер
Уваров Александр Александрович, аспирант
Зазолин Артем Александрович, старший лаборант
4. Основные научные направления
Основная деятельность лаборатории посвящена исследованию ядерных топливных материалов. Научные направления:
– теплофизические свойства материалов;
– термодинамические свойства материалов;
– совместимость материалов;
– порошковые технологии;
– технологии термического спекания и альтернативной консолидации;
– получение материалов с заданной структурой.
5. Исследовательское оборудование и установки
1. Прибор синхронного термического анализа STA 409 CD с квадрупольным масс-спектрометром QMS 403C Aëolos фирмы «Netzsch» (Германия). Дифференциальная сканирующая калориметрия (ДСК), дифференциальный термический анализ (ДТА), измерение изменения массы и анализ выделяющихся газов (квадрупольный масс-спектрометр)
2. Горизонтальный дилатометр DIL 402 C фирмы «Netzsch» (Германия). Определение коэффициента линейного термического расширения и изменения длины при нагревании (например, усадки при спекании) образцов любых твердых тел.
3. Шаровая планетарная мельница «Pulverizette 5» фирмы Fritch (Германия) для тонкого помола порошковых материалов в контролируемых условиях.
4. Прибор синхронного термического анализа STA 449 F1 фирмы «Netzsch» (Германия) с максимальной рабочей температурой 2400 °С с возможностью термомодуляции. Дифференциальная сканирующая калориметрия, дифференциальный термический анализ, термогравиметрия.
5. Дилатометр DIL 402 E Pyro фирмы «Netzsch» (Германия) с максимальной рабочей температурой 2800 °С. Измерение коэффициента линейного термического расширения и исследование процессов спекания тугоплавких керамик
6. Дифференциальный сканирующий калориметр DSC 404 F1 фирмы «Netzsch» (Германия) с термомодуляцией, совмещенный с термогравиметрией с максимальной рабочей температурой 1600 °С. Термический анализ и измерение теплоемкости сплавов и керамических материалов
7. Установка, реализующая метод лазерной вспышки LFA 427 с максимальной рабочей температурой 2400 °С. Определение температуропроводности и теплоемкости материалов.
8. Растровый электронный микроскоп Jeol 6610 (Япония). Исследование топографии и структуры поверхности, получение изображения во вторичных и обратно-рассеянных электронах. Рентгеноспектральный микроанализ элементного состава с использованием энергодисперсионного и волнодисперсионного спектрометров (EDS, WDS).
9. Прибор Zirconia-М (Россия), для контроля и изменения парциального давления кислорода в газовых средах спекания.
6. Научные проекты:
Активные проекты
– НИР по теме «Изучение высокотемпературных свойств топлива UO2 и (U,Gd)O2», срок выполнения работ до 31 марта 2023 г. Заказчик АО «ВНИИНМ».
– НИР по теме «Разработка лабораторной технологии изготовления образцов U3Si2. Исследование высокотемпературных теплофизических свойств и коррозионной стойкости образцов U3Si2», срок выполнения работ до 15 июня 2022 г. Заказчик АО «ВНИИНМ».
Завершенные проекты
– «Исследование теплофизических свойств конструкционных, топливных и поглощающих материалов действующих и перспективных ПЭЛ ПС СУЗ реакторов типа ВВЭР и БН» 2020 г. Заказчик ФГУП НИИ «НПО «Луч».
– Государственное Задание Министерства образования и науки Российской Федерации «Комплексный анализ процесса спекания оксидного ядерного топлива» 2017-2019 гг.
– НИР по теме «Исследование процесса спекания уран-гадолиниевых таблеток с содержанием оксида гадолиния до 10 %» 2017-2019 гг. Заказчик ПАО «МСЗ».
7. Публикации:
1. Identification of the sintering mechanism of oxide nuclear fuel through the analysis of experimental pore size distributions // Journal of the Physical Society of Japan, 2020 Vol. 89, No. 2. http://doi.org/10.7566/JPSJ.89.024803
2. Determination of Density and Pore Size Distribution in Uranium Dioxide Fuel Pellet by Image Analysis of its Cross-Sectional Structure // Journal of the Physical Society of Japan, 2019 Vol. 88, No. 7 http://doi.org/10.7566/JPSJ.88.074802
3. Kinetic and microstructural studies of thermal decomposition in uranium mononitride compacts subjected to heating in high-purity helium // Journal of Nuclear Materials, 2016 Vol. 475, pp. 266-273 http://doi.org/10.1016/j.jnucmat.2016.04.018
4. Thermal stability investigation technique for uranium nitride // Annals of Nuclear Energy, 20 16 Vol. 87, pp. 784–792 http://doi.org/10.1016/j.anucene.2014.09.023
5. Thermal conductivity of perspective fuel based on uranium nitride // Annals of Nuclear Energy, 2016 Vol. 87, pp. 799-802 http://doi.org/10.1016/j.anucene.2014.08.011
8. Выпускные квалификационные работы:
«Высокотемпературное термическое расширение уран-гадолиниевого оксидного ядерного топлива», Савинных С.С., ВКР специалиста, 2021.
«Влияние характеристик исходных порошков диоксида урана на структуру и свойства таблеток оксидного ядерного топлива», Матвенов М.Е., НКР аспиранта, 2020.
«Термохимическая стабильность модельного нитридного ядерного топлива на основе урана», Михальчик В.В., диссертация на соискание ученой степени кандидата технических наук, 2019.
«Влияние режимов прессования на спекание таблеток диоксида урана», Ефименко А.С., ВКР специалиста, 2018.
«Теплофизические свойства оболочек ПЭЛ из стали 06Х18Н10Т», Бутов Н.А., ВКР бакалавра, 2018
9. Примерные темы НИРС и ВКР
Измерение температуропроводности образцов на основе диоксида урана при температуре до 2350 °С.
Разработка установки и определение температур плавления тугоплавких керамик.
Разработка методики измерения теплоёмкости по результатам импульсного эксперимента.
Получение таблеток из порошков U3Si2.
Экспериментальное определение температурных зависимостей теплофизических свойств образцов U3Si2.
10. Проектная практика
Готовность научной группы проводить проектную практику для студентов 1 курса
Нет
11. Прочая информация
https://kaf9.mephi.ru/